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Abstract 

Interest in the development of super-maneuverable, micro-air-vehicles has led to the re- 
examination of basic flight modes, particularly, those that are inspired by biological 
observations. The majority of experimental and numerical studies related to flapping 
flight have explored the relationships between the thrust coefficient (and propulsive 
efficiency) and wing geometry and kinematics. Relatively speaking, the wing flexibility 
and the interplay between kinematics and flexibility have received less attention, and 
currently, it remains unclear as to if they can be exploited to achieve a better performance 
during low Reynolds number flapping flight. To bridge this gap, the role of flexibility and 
fluid-structure interactions in flapping flight have been numerically investigated by using 
a two-dimensional, two-component wing system with a torsion spring. One of the 
primary outcomes of this work is that nonlinear resonances play an important role in 
determining the performance of a flapping wing system, mainly through the formation of 
leading, trailing edge, and end of stroke vortices and interactions amongst them. 

Key words: flapping wing, fluid-structure interactions, wing flexibility, nonlinear 
resonance, low Reynolds numbers 
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Summary 

In the present work, a computational investigation is carried out to understand the 
influence of flexibility on the aerodynamic performance of a hovering wing. A flexible, 
two-dimensional, two-link model moving within a viscous fluid is considered. The 
Navier-Stokes equations governing the fluid dynamics are solved together with the 
equations governing the structural dynamics by using a strongly coupled fluid-structure 
interaction scheme. Harmonic kinematics is used to prescribe the motions of one of the 
links, thus effectively reducing the wing to a single degree-of-freedom oscillator. The 
wing's flexibility is characterized by the ratio of the flapping frequency to the natural 
frequency of the structure. Apart from the rigid case, different values of this frequency 
ratio (only in the range of 1/2 to 1/6) are considered at the Reynolds numbers of 75, 250, 
and 1000. It is found that flexibility can enhance the aerodynamic performance and that 
the best performance is realized when the wing is excited by a nonlinear resonance at 
one-third of the natural frequency. Specifically, at the Reynolds numbers of 75, 250 and 
1000, the aerodynamic performance that is characterized by the ratio of lift coefficient to 
drag coefficient is respectively increased by 28%, 23%, and 21% when compared with 
the corresponding ratios of a rigid wing driven with the same kinematics. For all 
Reynolds numbers, the lift generated per unit driving power is also enhanced in a similar 
manner. The wake capture mechanism is enhanced, due to a stronger flow around the 
wing at stroke reversal, resulting from a stronger end of stroke vortex at the trailing edge. 
The present study provides some clues about how flexibility affects the aerodynamic 
performance in low Reynolds number flapping flight. In addition, it points to the 
importance of considering nonlinear resonances for enhancing aerodynamic performance. 

Key words: flapping wing, fluid-structure interactions, finite-difference method, wing 
flexibility, nonlinear resonance, low Reynolds numbers 



Introduction 

Over the past decade, insect flight has attracted a lot of interest in a variety of disciplines 
in science and engineering. As a result, many experimental investigations (e.g., 
Ellington, Van den Berg, Wilmott, and Thomas, 1996; Dickinson, Lehmann, and Sane, 
1999) as well as computational investigations (e.g., Liu and Kawachi, 1998; Sun and 
Tang, 2002; Ramamurti and Sandberg, 2002, 2006; Wang, 2000a, 2000b; Wang, Birch, 
and Dickinson, 2004) have been reported in the literature. The aim of most of these 
studies has been the understanding of complex, unsteady mechanisms that enable the 
generation of aerodynamic forces for hovering and maneuvering. Insect wings are 
complex structures that during flapping undergo deformations due to aerodynamic forces, 
elastic forces, as well as inertia forces due to the accelerations experienced by the system 
mass. The wing structural behavior depends, to a large extent, on the internal distribution 
of compliant components and mechanisms (Wootton, 1999). It is important to note that 
insect wings lack internal muscles, and hence, there are no actuators to realize internal 
control forces (Wootton, Herbert, Young, and Evans, 2003). 

In a variety of species, the roles of inertial, elastic, and aerodynamic forces during 
flapping flight have been the focus of many investigations (see for example, Ellington, 
1984b; Ennos, 1989; Lehman and Dickinson, 1997; Sun and Tang, 2002; Daniel and 
Combes, 2002; Combes and Daniel, 2003; Song, Wang, Zeng, and Yin, 2001). It is 
difficult to make direct comparisons between the different studies, not only because the 
studies usually involve different species, but also because different approaches have been 
used to compute the forces. For example, Combes and Daniel (2003) assessed the 
relative contributions of aerodynamic, inertial, and elastic forces to the wing deformation 
of the Manduca sexta hawkmoth. They concluded that the wing motion of this particular 
insect is mostly determined by the wing inertia and elastic forces with the aerodynamic 
loads providing damping. During hovering, they found that the typical ratio of wing 
inertia force to aerodynamic force is about seven. This result was obtained by using 
scaling arguments and assuming a weight balance to get a fluid-force estimate. In other 
species, this ratio has been found to be much lower. Ennos (1989), for example, showed 
that for several species of Diptera, the magnitudes of inertia bending moments are about 
twice that of the magnitudes of aerodynamic moments during harmonic flapping. Also, in 
this case, the analysis was based on the weight-balance assumption and harmonic 
kinematics. However, unlike Combes and Daniel (2003), they considered the effect of the 
virtual or added mass of the surrounding fluid. It should be noted that in the studies of 
Ennos (1989) and Combes and Daniel (2003), the aerodynamic forces are 
underestimated, since the drag component of the fluid force is neglected. 

With increase in computational power, computational models of insect flight have 
become sophisticated. Two-dimensional computations (e.g., Wang, 2000a, 2000b; Miller 
and Peskin 2005, Miao and Ho 2006) and three-dimensional computations (e.g., Liu and 
Kawachi, 1998; Ramamurti and Sandberg, 2002, 2006; Sun and Tang, 2002) with various 



degrees of complexity have been reported. In general, for low ratios of inertia to 
aerodynamic forces, one can expect complex aeroelastic interactions to occur. An 
interesting open question within this context is the following: How does structural 
flexibility affect the aerodynamic performance of a given flapping wing and what is the 
effect of the Reynolds number? The present study attempts to address this question by 
using computational investigations. To the best of the authors' knowledge, no prior 
computational studies addressing this question have been carried out. 

In the present study, in order to explore a fairly wide parametric regime in a cost-efficient 
manner, the authors limit themselves to studies in two dimensions. A representative 
section of the wing (two-dimensional foil) is used in this study, and spanwise bending 
and torsion flexibility are discarded. A two-link structure connected with a torsion spring 
is used to account for deformation in the chordwise direction. This system has four 
degrees of freedom, which are effectively reduced to one, by prescribing harmonic 
hovering motions of one of the links. The links are considered to be rigid in the present 
work, and they are currently being extended to flexible beams in ongoing efforts. The 
large angular deformations of the links give rise to cubic and higher order odd 
nonlinearities in the governing equations like those seen in equations governing a 
pendulum as well as flexible beams (e.g., Anderson, Balachandran, and Nayfeh, 1994). 
In a sense, one could consider the two links as a double pendulum with a torsion spring. 
Fluid nonlinearities are also considered here. Different values of the torsion spring 
stiffness are considered at the Reynolds numbers of 75, 250, and 1000, and the results 
obtained are reported in the form of mean lift force, mean drag force, ratio of lift to drag, 
and ratio of mean lift coefficient to total power input. The performance of the hovering 
wing is also examined when it is excited at a nonlinear resonance of the structural system. 

In the following section, a description of the system is provided along with the 
computational formulation. Then, the parametric space and system kinematics are 
detailed. Next, results and discussion sections follow, with a closure section at the end. 

System description and computational formulation 

As aforementioned, the authors consider a section of a three-dimensional wing and 
accounts for chordwise deformations, but do not account for spanwise bending and 
torsion flexibility. As shown in Figure 1, the considered structural system consists of two 
rigid links A and B, which are joined at the center b by a pin that contains a linear torsion 
spring. In the current model, flexibility is concentrated at one discrete location of the 
structural system, and inclusion of elastic links will allow one to account for chordwise 
variations of stiffness and mass. For computational purposes, the two links are covered 
by a set of aerodynamic surfaces that define the boundary between the airfoil and the 
fluid, and deform as the angle between the two links changes. The aerodynamic surfaces 
consist of two rigid segments, Rsa and Rsb (see Figure IB), and two segments that 
dynamically deform according to the angle between the two links. The deformation is 
prescribed by fitting the Hermite interpolation polynomials C1-C2 and C3-C4.  The authors 



have found that this modeling is robust and helps maintain the smoothness of the surface 
even for large values of the angle between the plates (large deformation configurations). 

System equations 

The flapping motions of the chosen two-dimensional configuration in a fluid are 
governed by a coupled system of equations descriptive of the respective fluid and 
structural mechanics. The fluid dynamics is governed by the Navier-Stokes equations for 
an incompressible flow; that is, 
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where / is the time, x( (7=1,2) is the spatial coordinate in the i   Cartesian direction, w, is 

the corresponding velocity, p is the pressure, and/ is an external body force. The above 
equations have been made dimensionless by using the chord length of the undeformed 
plate, Lc, as the reference length scale, and the maximum translational velocity at the 

junction of the links, Uc, as the reference velocity scale.    The Reynolds number is 

defined  as Re = p/L.UL./// ,  where pf and //  are  the  fluid  density  and  viscosity, 

respectively. 

The dimensionless form of the equations governing the motion of the structural system 
shown in Figure 1 can be derived as 
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where x(t), y(t), and 6{t) are respectively the joint horizontal motion, joint vertical 

motion, and orientation angle of link B measured from an inertial reference frame as 
shown in Figure 1A, and a{t) is the deflection angle between links A and B. Here, m, is 
the total mass of the /th link (i=A, B), r\, is the distance from the junction to the center of 
mass of bar /' as shown in Figure 1 A, and 7, is the moment of inertia of link /' with respect 
to the hinge point b.   Also, Qx and Qv are the fluid forces along the x and y directions, 

respectively, and Qe and Qa are the fluid moments associated with the generalized 



coordinates  6{t) and a(t) ,   respectively.   The  quantities  gx,gy,ge, and ga   are  the 

corresponding contributions of centrifugal, elastic, and gravity forces. The reference 
length scale and velocity defined above, together with the fluid density are used to make 
system (3) dimensionless. The fluid forces and moments are determined from equations 
(l)and(2). 

In the numerical experiments conducted in this study, the translational motions of the 
junction, as well as the orientation of link B are prescribed. With these prescribed 
motions, the four degrees of freedom of the system can be effectively reduced to one; that 
is, the deflection angle a(t) between plates A and B. Thus, the overall deformation of the 
wing section is determined by the deflection angle a(t), which is governed by the 

following reduced form of system (3): 

IAa + ka = -IA9 + mAnAs\n{6 + a)x + Qa . (4) 

Equation (4) resembles the equation governing a harmonic oscillator with forcing due to 
the prescribed kinematics and the fluid forces (e.g., Nayfeh and Balachandran, 1995). 
The nonlinearities arise from the sin(# + a) term due to the kinematics and the fluid 

forcing. For this particular study, the authors only take into account the fluid damping 
which arises through the fluid moment^ •   It should be noted that selecting a proper 

structural damping model is far from trivial, and this is an active research topic in 
structural biomechanics. Damping models for insect wings are relatively few (e.g., 
classical viscous damping model used by Herbert, 2002 and the viscoelastic model used 
by Bao, Hu, Yu, Cheng, Xu, and Tong, 2006) and the existing models require a fair 
amount of empirical information. 

Prescribed kinematics, parameter values, and computational formulation 

To prescribe the translational motions of the junction and the orientation of link B, the 
authors define the states x(t), y(t), and 6(t) as 

x(t) 
f      -'-\A (      -^ 
l-e '  -fcos(Q)ft)   ;   y(t) = 0   ;   0{t) = 0o + \\-e ' 

K        ) 2 V 
/sin(fty + ^) ,     (5) 

where Aa is the stroke length of the pin point, 0o is the mean orientation angle for link B. 

y is the rotation amplitude, <o, is the frequency of the prescribing or forcing oscillation 

and <f> is the phase angle between x(t) and 6{t). The exponential terms are used in order 

to reduce transient effects (Combes and Daniel, 2003). The time constant is chosen 
?isr = \.6*nl(of, since 99.8% of the prescribed amplitude is reached after a time length 

of 5 periods. The following parameters corresponding to symmetric hovering are 
selected (Wang et al., 2004): 
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Based on the adopted normalization, the problem is completely defined by the density 
ratio phl pt , frequency ratio cof / con, and the Reynolds Number Re. Here, ph is the 

density of the wing's material, and con = ^jkl IA is the linear natural frequency of the 

oscillator (4). The frequency ratio coflcon is used to characterize the flexibility of the 

wing section. 

Three Reynolds numbers are considered (Re=75, 250 and 1000) to investigate the effect 
of the reduction in viscous dissipation on the system dynamics. The mass ratio is set to 
p41 p{ = 25, since this value provided a ratio close to 2 for the maximum translational 

inertia force over maximum drag force at Re =75, for the chosen geometry and 
kinematics. The above ratio was determined through numerical experiments with the 
rigid wing. To compute the maximum horizontal translational inertia force, the total wing 
mass is multiplied by the maximum acceleration determined from the second derivative 
of x(t) in equation (5). The value of peak drag force, on the other hand, is obtained from 
the rigid wing simulation at Re=75. The wing has a thickness of 10% of the undeformed 
chord length and circularly formed edges. For the simulations conducted at Re=75, the 
frequency ratio co, Icon is set to 1/2, 1/2.5, 1/3, 1/3.5, 1/4, and 1/6. For Re = 250 and 

1000, this ratio is set to 1/2, 1/3, 1/4, and 1/6. The resulting range of maximum deflection 
angles varied from 10° to 70°. Also, the rigid wing problem (no angular deformation 
between the links) was run for all of these Reynolds numbers. It should be noted that for 
frequency ratios below 1/2, the computations would fail since the two plates collide 
during rotation. This limitation arises from the fact that the flexibility in the present 
model is concentrated at the hinge point and the distributed chordwise variations of 
stiffness and mass is not accounted for. A flexible beam model and/or inclusion of 
structural damping may help to address this issue and enable computations with 
frequency ratios of about one. 

Equations (1), (2), and (4) governing the dynamics of the fluid-structure system are 
numerically solved by using a strongly coupled, embedded-boundary formulation. The 
overall approach is a mixed Lagrangian-Eulerian formulation, where equations (l)-(2) 
governing the fluid flow are solved on a fixed Cartesian grid, which is not aligned with 
the wing surface, and the non-slip conditions are enforced via local reconstructions of the 
solution near the solid interface (see, for example Balaras, 2004, Uhlmann, 2005, Yang 
and Balaras, 2006). The fluid and the structure are treated as elements of a single 
dynamical system, and all governing equations are integrated simultaneously and 
interactively in the time-domain by using a predictor-corrector scheme. Further details on 
the coupling scheme and the overall fluid-structure interaction algorithm can be found in 
the work of Yang, Preidikman, and Balaras (2008). 



Results 

In this section, computations of aerodynamic forces are presented for three different 
Reynolds numbers and different wing flexibility values. Comparisons are also made 
between the results obtained for the rigid wing and flexible wing cases and with the 
results obtained by Wang et al. (2004). 

Computational setup 

The computational grid was carefully selected to resolve the thin boundary layers and 
detached shear layers on the moving links and the wake vortical structures for the 
different Reynolds numbers considered in this study. The rigid wing was set to move in 
the center of a box with the dimensions of 30 Lc x 30 Lc, in order to minimize interference 
effects from the far-field boundaries. A near uniform grid zone was generated near the 
center, where the motions of the two-link system took place, and this zone was stretched 
towards the boundaries. For the Re = 75 simulations, the uniform grid zone had a local 
cell size of Ax = Ay = 0.0038Z,C, and the total number of points was 1229 x 551 along the 
x and y directions, respectively. Through grid refinement studies, the authors found that 
the above resolution was sufficient to capture all flow features. In Figure 2, 
computationally obtained aerodynamic forces are shown for approximately half the 
resolution throughout the computational domain (total number of points was 664x400) 
and the same forcing conditions (i.e., T = 0 in equations (5)) and Reynolds number as that 
for the baseline rigid wing computation. The corresponding lift and drag coefficients 
determined in the computations of Wang et al. (2004), where a hovering ellipse with the 
same kinematics is considered instead of a plate, is also included in the figure. The 
agreement between the results obtained with the two different grids is good with a 
maximum difference of around 3%. Despite the differences in the wing-section shapes, 
after the initial transients (t/T>2), good agreement is also seen with the results obtained 
by Wang et al. (2004). 

For the results of Figure 2, within the boundary layers on the link surface, the authors 
estimated the number of grid points to be approximately 8 and 16 for the coarse and fine 
grids, respectively.   As the Reynolds number increases, the boundary layer thickness is 

expected to decrease as 1/vRe, and in order to keep the resolution within the above 

range, a grid with 1320 x 1038 points was found to be sufficient for both Re = 250 and 
1000 cases. All the results presented in this article have been obtained with a 1229 x 551 
grid for the Re = 75 simulations and a 1320 x 1038 grid for the Re = 250 and Re = 1000 
simulations. The governing equations were integrated for a time length of 14 periods, 21 
periods, and 15 periods, for Re = 75, 250, and 1000, respectively. The time-averaged 
quantities were computed over the last 7 periods, 13 periods, and 10 periods, for Re = 75, 
250, and 1000, respectively. 

Aerodynamic quantities 



For the flexible wings considered in this study, the lift and drag coefficients are defined 
as 

^(0=^^ = 26,(0 ; C„(0 = -^<f(")e:")/L-=-2^v(0)a(0.     (7) 
\P,V)L, \P,

V
I
L

. 

where the quantities (?*(/)and Q*(t) are dimensional quantities and gx(/)and Qv(t) are 

non-dimensional quantities. Once the equation for the deformation a(t) is solved at each 
iteration, the driving forces in the prescribed generalized coordinates x(t), y(t), and d(t) 
are computed from the system (3). The total power input, which is the sum of horizontal 
translation power and rotation power, can be computed from 

p„=Rx(t)m 8 
Prol=Re(t)6{t) 

where P,r and Pr0, are the translational and rotational power inputs at the hinge b, Rx(t) is 
the driving force in the x direction, and Reft) is the driving moment in the Oft) angular 
direction. In an ideal case were the driving mechanism is perfectly elastic and the 
negative power provided to the mechanism can be stored as potential energy for later use, 
this power will enhance the wing's aerodynamic efficiency. Here, following Berman and 
Wang (2007), a conservative approach is used and it is assumed that the negative power 
is not available for reuse; that is, 

K,    i/P,r>0 p      JPM.    ifPr,„>0 
. 0, ifP„<0   '     ""    1  0, ifProl<0 

(9) 

The power coefficient is defined as 

c,..-(0 = (f"|(')+f"(0)/4=2W(0+f„,(0). (10) 

where /)*(/) and P*„(l) are   dimensional   quantities   and   Plr(t) and   Pn„(t) are   non- 

dimensional quanitites. 

In Figure 3, the variations of the mean values of Q and Co and the aerodynamic 
performance ratios CJCo and CJCpw with respect to the frequency parameter cof I a>n are 

shown. The rigid wing has zero torsion stiffness or equivalently con = 0. For all cases, the 

lift  and  drag  coefficients  exhibit a  peak  at a  frequency  ratio cof Icon = 1/3 .  The 

performance ratio CJCD also exhibits a prominent peak at this frequency ratio. For Re = 
75, 250, and 1000, increases of about 28%, 23%, and 21% over those obtained for the 



rigid wing are observed, respectively. The variations of the aerodynamic quantities with 
respect to the frequency ratio show similar characteristics for all three Reynolds numbers. 
However, it is interesting to note the striking difference between the graph of CL/CD 

obtained for the Re = 75 case and those obtained for the higher Reynolds numbers. For 
the lowest Reynolds number and aj I con =1/4, the above ratio is over 13% higher than 

that obtained for the rigid wing, while for Re=250, it is increased only by 0.5%. In 
Figure 3C, it is seen that forft^ Icon = 1/3, the performance ratio CJCpw is 39% and 28% 

higher than the obtained for the rigid wing for Re = 75 and Re = 250 cases, respectively. 
Interestingly, this measure is only about 13% higher than that obtained for the rigid case 
at Re = 1000. 

In Figure 4, the time histories of the lift and drag coefficients are shown for all Reynolds 
numbers at three selected frequency ratios. The effects of flexibility are noticeable on the 
lift-force peaks at the initiation of stroke (indicated with a black arrow in the figure). For 
Re=75 and&>/ Icon =1/2, corresponding to the most flexible foil, this peak is negative, 

while for the rigid case the coefficient of lift peaks at 0.5. For all cases in between, the 
enhancement on the mean lift force seen in Figure 3 comes from the gradual increase of 
this peak, which is at 0.83 and 1.28 for cof/co„ =1/4 and cof I con = 1 / 3, respectively. For 

the latter frequency ratio, where a structural nonlinear resonance occurs, the lift peak is 
also delayed and nearly coincides with the translational lift peak. This is translated into a 
larger area under the lift curve per period and a larger time averaged d value. The 
temporal variations of lift and drag coefficients for Re = 250 and 1000 is more complex 
than the variations seen at Re = 75, and the periodicity is practically lost. Still, in an 
average sense, negative lift peaks after stroke reversal and larger translational lift peaks 
are  seen  when cof Icon=M2 .     Also,  a widened  two-peak  lift  curve  is  observed 

when cot I con = 1 / 3. 

Vortex structures 

In order to relate the temporal variations of the lift and drag forces to specific flow 
structures, the authors carefully examined several realizations of the instantaneous flow 
fields. In Figure 5, vorticity isolines are shown for the rigid and co} Ico„ =1/3 cases at Re 

=7 5. For clarity, the lift coefficient variation has been added (Figure 5K), together with 
the temporal variation of the phase-averaged circulation of the most important vortical 
structures generated during a flapping cycle. These are the leading edge vortex (LEV) 
shown in Figure 5A, the end of stroke vortex (ESV) shown in Figure 5C, and trailing 
edge vortex (TEV) shown in Figure 5E. The circulation of each of these vortices has 
been computed as a function of time by direct integration of the vorticity within a given 
threshold contour around each vortex. The selection of the threshold contour, although 
arbitrary, has been consistently taken to be the lowest closed vorticity isoline in the 
vicinity of the given vortex. 

As the flexible wing approaches the end of stroke in Figure 5A, it exhibits different 
rotation velocities on the two components A and B. The driven link B rotates with the 



prescribed angular velocity #(f), and the lower link A, rotates with an angular speed 

(d(t) + d(t)j. The effect of the added angular speed d(t) affects the overall dynamics at 

stroke reversal. First, the camber generated by the angular deformation a{t) at the end of 

stroke (see Figure 5B) reorients the zero lift direction on the wing and enhances wake 
capture effects. This enhancement mechanism is analogous to the one produced by 
orientation advancement in rigid wings (e.g., Wang et al. 2004). It is important to note 
that an excessive degree of flexibility (low frequency ratios) produces a large camber at 
stroke reversal, which has a negative effect on the lift production (e.g., at cof Icon =1/2 

in Figure 4). The evolution and strength of the LEV on the other hand (see Figure 5 A) is 
only a weak function of the wing's flexibility. The formation time as well as the 
maximum circulation shown in Figure 5L are approximately the same for both the rigid 
and the flexible wings. 

Another effect of the higher rotation speeds at the trailing edge for the flexible wings is 
the formation of a stronger shear layer, which rolls-up into a stronger ESV (see Figure 
5C). On examining the ESV circulation plots (Figure 5K), one finds that the strength and 
life span is significantly enhanced when compared with those of a rigid wing. The ESV 
pinches-off later, forming a pair of counter rotating vortices together with the LEV. This 
vortex pair generates flow directed towards the wing enhancing the wake capturing 
effects. This is more clearly reflected in the lift coefficient evolution shown in Figure 5K. 
In contrast to the rigid wing, where the lift curve reaches a maximum (point H) and starts 
to decrease, for the flexible wing the production of increased lift continues longer (point 
C). 

Once a flexible wing's deflection has reached its maximum, the elastic energy stored in 
the torsion spring is released to generate a restoring motion, whose timing again depends 
on the degree of flexibility of the structure (see Figures 5D and 5E). This restoring 
motion produces a dynamical change of the wing's camber with a resulting increase in 
the fluid forces. This also affects the formation and growth of the TEV. It is well 
established that this flow structure generates a low-pressure zone, which translates into 
increasing forces up to the pinch-off time (see for example Wang, 2000b). The time at 
which the TEV pinches off is correlated with the translational force peak; this peak 
happens much later in the (o, Icon =1/3 case when compared with that for the rigid wing. 

In Figure 6. a quantitative comparison of the LEV, ESV, and TEV dynamics is made for 
different flexibilities at Re = 75 by determining their average circulations as a function of 
time. The maximum averaged circulation for each vortex and the time at which it occurs 
with respect to the stroke reversal are provided in Table 1. As expected, from what was 
observed in Figure 5, the LEV dynamics is similar for all frequency ratios both in terms 
of strength and timing. The TEV on the other hand, attains a higher maximum circulation 
as the wing becomes more flexible. However, the time it takes to reach this maximum 
circulation is shortest forft^ Icon =1/3, where the best aerodynamic performance is seen. 

For the ESV vortex, the maximum circulation increases for the frequency 
ratioscot Icon =1/3and 1 /4 . The peak circulation forcof Icon=M3 is 20% lower than that 



obtained for cof/con =1/4, but the deflection at stroke reversal in terms of the maximum 

deformation angle is 90% larger when 6^ Icon =1/3 (56 degrees for cof Icon = 1/3 and 29 

degrees forcof Icon =1/4). This is translated into a larger projected area contributing to 

the lift force. Also, as seen from Figure 6, the time delay of the peak circulation of the 
ESV vortex is increased as the wing becomes more flexible. 

A more direct illustration of the abovementioned vortex evolutions is given in Figure 7, 
where instantaneous vorticity isolines are shown for eight characteristic instances during 
a flapping cycle. Forty, Icon =1/3 and 1/4, it is clear that the enhanced ESV vortices 

produce an oblique shaped TEV vortex. Forcof /con = 1/2, an excessive negative camber 

is produced at stroke reversal, which then generates a high suction zone on the lower side 
of the wing leading to the negative peak in the CL curve seen in Figure 4. The Reynolds 
number effects on the temporal evolution of the lift and drag forces seen in Figure 4 can 
also be observed in Figure 8, where the instantaneous vorticity isolines are shown for Re 
= 250 for all frequency ratios. Clearly, as the viscous damping is decreased, the system 
dynamics system ceases to be periodic and the important vortices are stronger and are not 
dissipated as quickly as seen in the Re = 75 case (see Figure 7). For the case of a rigid 
wing, for example, the LEV from a given stroke interacts with the shear layer being 
generated in the next stroke, and this induces a premature formation of the new LEV. 
This process is not periodic, which is also reflected in the evolution of lift and drag forces. 
A similar interaction is observed at cof Icon=M2 (see last three frames in Figure 8B). 

Discussion 

Insect wings are flexible structures that undergo large displacements and deformations 
during flapping, as the wing structures interact with the surrounding flow. There has been 
speculation that many insects flap their wings at frequencies close to the natural 
frequency of the structure. For example, analysis of the Manduca sexta wings (see 
Combes and Daniel, 2003 and Wootton, 2003) has shown that the wing's first natural 
frequency is close to the driving frequency in normal flapping motion. This suggests that 
insects may be taking advantage of a structural resonance to reduce energy consumption 
and enhance aerodynamic performance. Despite the significance of such a hypothesis, 
only a limited number of studies have addressed the problem due to the exceedingly 
complex fluid-structure interactions that are encountered in experimental or numerical 
work. Although three-dimensional computations of the Navier-Stokes system coupled 
with a wing structural system are within the reach of today's computers, one still needs to 
develop appropriate mathematical models and tools to capture all important phenomena 
in this complex system. In this regard, the present study extends computational work that 
has been conducted before with simplified two-dimensional rigid wings to include the 
effects of flexibility. The wing is represented by two rigid links, which are joined at the 
center by a pin that contains a torsion spring. The kinematics of one of the links is 
prescribed, while the motion of the other link is determined by the fluid-structure 
interactions. Although, a fairly wide range of Reynolds numbers and frequency ratios has 
been  examined,   the  authors   found  that  the  computations  would   fail   for  forcing 



frequencies close to the linear resonance frequency due to an excessive degree of 
flexibility. This limitation is due to the concentration of flexibility at a discrete point, and 
the replacement of rigid links with elastic links modeled as elastic beams is expected to 
help in overcoming this limitation. 

As mentioned earlier, the two link structural system can be perceived as a double 
pendulum with a common hinge. In particular, when one of the link motions is 
prescribed, the other link behaves as a pendulum subjected to a constraint arising from 
the prescribed motion and complex fluid-structure interactions. Equation (4) does 
resemble the equation of a pendulum driven in a fluid. A straightforward perturbation 
analysis (e.g., Nayfeh and Balachandran, 1995) shows that the structural system can 
exhibit  nonlinear  resonances  at o)f=\/3a>n  and cof -3 con .  These  resonances  are 

expected in systems with cubic nonlinearities, for example, in the equations governing 
local oscillations of a pendulum about an equilibrium position and elastic systems such as 
beams (e.g., Anderson et a\., 1994). Operation of the flexible wing at the nonlinear 
superharmonic   resonance  co/=\/3con   is   seen   to   beneficial   for  the   aerodynamic 

performance. Inclusion of fluid effects will give rise to quadratic nonlinearities and 
additional nonlinear resonances. 

For the specific set of kinematics that the authors considered, most of the benefits of 
having a flexible wing are associated with the stroke reversal phase of the cycle. 
Especially for the optimal flexibility cases (cof = U3con), the strength and timing of the 

ESV, as well as the dynamical changes of the wing's camber due to structural 
deformations, are responsible for the performance enhancement. The overall 
enhancement mechanism is analogous to the one produced by orientation advancement in 
rigid wings (see for example, Wang et al. 2004). It is noted that the present computations 
cover a wide range of frequency ratios, and consequently, wing deflections range from a 
few degrees to very large values. For example, in the case of highly stiff wings (e.g., 
cot Ia>n =1/6), maximum deflection angles between the links was about 11°, 13° and 16° 

for Re = 75, 250, and 1000 respectively, while for highly flexible wings (e.g., 
o)flo)n=\l2), the corresponding numbers were 67°, 68°, and 91°, respectively.    In 

insects, the wing deformation magnitudes increase as the body size and mass increase, 
and it is conceivable that deformations seen in this study at the aerodynamically preferred 
frequency ratio of col Iton = l/3could be possible in some species. On the other hand, for 

small insects such as the Drosophila, only small magnitude wing deformations have been 
observed. The computations of this study show that as the wing is made stiffer, the 
performance enhancements are marginal when compared to a rigid foil. For example, at 
Re = 75 and the highly stiff casea>/ /ft>„ = 1/6, the CL/CD is approximately 6% higher 

when compared to that of a rigid foil. For the higher Reynolds numbers Re = 250 and 
1000, there is actually no enhancement, and the performance is worse than that obtained 
with a rigid foil. The above results indicate that low Reynolds number regimes might 
benefit in performance even at small chordwise distortions. 



The force histories, in particular, for the low Reynolds numbers appears to reach a 
periodic steady state after the initial transients for all of the frequency ratios that were 
considered, suggesting that quasi-steady models might be able to reproduce this behavior. 
Such models have been reported in the literature, and these models have been adapted for 
flapping flight based on models developed for high Reynolds number fixed wing 
aeroelasticity studies by including wing rotation along with translation (Ellington, 1984a, 
1999), and forces due to added mass (Sane and Dickinson, 2002). In a more recent study 
(Wang et al., 2004) the unsteady forces from experiments and with two-dimensional 
computations were compared with the quasi-steady model predictions. They pointed out 
that the force predictions, which were made by using models based on potential flow 
theory (Munk, 1925) for a constant pitching amplitude and constant translating speed 
wing, deviated substantially from the experimentally determined unsteady forces. The 
forces predictions from a semi-empirical model based on numerical results from steady 
translating wings at a fixed angle of attack were in broad qualitative agreement with the 
unsteady forces. However, detailed comparisons revealed that depending on the 
kinematics, the unsteady effects can reduce the total lift by a factor 2 to 3. In the present 
case, due to the wing's flexibility, the identification of the quasi-steady contributions is 
more complex as additional new states have been included. 

Closure 

In the present work, the influence of flexibility on the aerodynamic performance of a 
two-dimensional hovering wing section has been numerically studied. The wing model 
consists of two rigid links that are joined at the center with a linear torsion spring. By 
prescribing the kinematics of the top link, the structural system is effectively reduced to a 
single degree-of-freedom nonlinear oscillator. The viscous flow around this structure is 
described by incompressible form of Navier-Stokes equations. The combined set of 
equations describing the fluid and structural dynamics are integrated in time by using a 
scheme that can capture strongly coupled fluid-structure interactions. 

The results obtained in this study demonstrate that flexibility can be beneficial in terms of 
enhancing the aerodynamic performance. Furthermore, it is seen that in the frequency 
range below the first natural frequency, the best performance is achieved when the wing 
is driven at a frequency close to one of the nonlinear resonances (a superharmonic 
resonance of order three) of the system. This behavior is seen to be common for all of 
the Reynolds numbers studied. In terms of the flow physics, the wake capture 
mechanism is enhanced partially due to a stronger flow around the wing at stroke reversal. 
However, it needs to be noted that the cases where the wing is driven at or close to the 
first natural frequency of the system were not considered in this study, and it is possible 
that a better aerodynamic performance may be achieved with a linear resonance and this 
remains to be explored. 

The study also leads to the following open questions: i) why is there a performance 
enhancement when the system is excited at a flapping wing's nonlinear resonance and 
would one achieve a better performance with a nonlinear resonance compared to a linear 



resonance? and ii) which kinematics is preferable from an aerodynamic efficiency 
standpoint? The interplay between wing flexibility and kinematics together with 
qualitative changes (and bifurcations) in the system dynamics as a function of the Re 
number require further investigation. 
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Figure 1: A) The two-link model. The rigid links A and B (thick black line) are connected at 
hinge b by a torsion spring with stiffness k. The variables x(t), y(t), 6(t) and a(t) are the 
generalized coordinates used to describe the wing's motion. In the hovering simulations, x(t), 
y(t), and 0(1) are prescribed and aft) is the only degree of freedom needed to define the system. B) 
Decomposition of the wing's aerodynamic surfaces into rigid and deformable sections for the 
immersed-boundary scheme. ^.s„ and R& are connected at points c\, c2„ c3 , and c4 by Hermite 
interpolating polynomials HSi and HX2- 



u 

V~ V 
o 

I 

^.     <c 
V X A  \S -°\   *V A 

D.5 1 5 2 
time/T 

25 3 5 

Figure 2: Time histories of lift and drag force coefficients CD, CL for symmetric harmonic 
hovering rigid link at Re = 75 and two different grid resolutions. ——— Rigid link, embedded 
boundary grid 1229x551; Rigid link, embedded boundary grid 666x402; and ——- Wang 
et al. (2004). 
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Figure 3: A) Variations of mean CL and CD with respect to the frequency ratio eof I con; (  #  ) 

for CL at Re = 75, (-#-) for CL at Re = 250, (-•-) for CL at Re = 1000, (-•-) for CD at Re = 
75, (-•-) for CD at Re = 250, and (-•-) for CD at Re = 1000. B) Ratio of mean CL/CD 

versus(y, Icon; (-•-) for Re = 75, (-•-) for Re = 250, and ("^-) for Re = 1000. C) Mean 

lift coefficient per unit of driving power coefficient versus ft;. I con; same definitions as in B. The 

results obtained for the rigid wing are also plotted for comparison. 
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Figure 4: Time histories of lift and drag coefficients for Re = 75, 250 and  1000: A) lift 
coefficient and B) drag coefficient; "- - rigid wing; flexible wing with a>f Icon - 1/2; 

flexible wing with cof I con = 1 / 3; flexible wing with cof I' con = 1 / 4. 
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Figure 5: Comparison of the rigid wing's performance during stroke reversal with respect to that 
of the flexible wing at a frequency ratio of 0). Icon = 1/3 at Re = 75. A, B, C, D, and E: Vorticity 

contours for flexible wing W\\ha>j lcan =1/3 at five time instances: t/T = -0.0491, 0.0009, 

0.0759, 0.1760, and 0.2260 ( comm =-10, <ymax =10, and 80 contours). F, G, H, 1, and J: 
Vorticity contours for the rigid wing at the same time locations. The white dashed lines indicate 
the end of stroke position; (K) lift coefficient history; and (L) histories of circulation of LEV, 
ESV, and TEV vortices. 
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Figure 6: Averaged circulations as a function of time at Re = 75;    TEV; LEV; 
- ESV.  A) Rigid wing,  B)  flexible wing with co. Icon = 1/2 , and C) flexible wing 

with a>f I con = 1 / 3, and D) flexible wing with cof I con = 1 / 4. 



Figure 7: Instantaneous vorticity contours at Re = 75. Contours range from -10 (blue) to 10 (red) 
with   80   intervals.   Column  A:   rigid  wing;   Columns   B,   C,   and   D:   flexible  wings  with 
en,Ia)„ =1/2, 1/3, and 1/4, respectively. 



Figure 8: Instantaneous vorticity contours at Re = 250. Contours range from -10 (blue) to 10 
(red) with  80  intervals.  Column  A:  rigid wings;  Columns  B,  C,  and  D:  flexible wings 
with cof I con =1/2, 1/3, and 1 / 4, respectively. 



Degree of 
flexibility 

Circulation 
TEV 

Time 
TEV 

Circulation 
LEV 

Time 
LEV 

Circulation 
ESV 

Time 
ESV 

Rigid 2.44 0.78 1.30 -0.02 044 0.001 

cof 1' con =1/2 3.14 0.75 1.30 0.03 0.31 0.18 

o)f 1 con =1/3 2.78 0.58 1.25 0.001 0.72 0.10 

coflcon =1/4 2.29 0.68 1.36 0.001 0.87 0.03 

CO. 1 con =1/6 2.36 0.80 1.43 0.001 0.59 0.02 

Table 1: Values of maximum mean circulation obtained for the TEV, LEV, and ESV at Re=75. 
Time is defined in the same way as in Figure 6. 


